
Three-dimensional Finite Element Formulation and Scalable

Domain Decomposition for High Fidelity Rotor Dynamic Analysis

Anubhav Datta Wayne Johnson
ELORET Corporation Aeromechanics Branch

AFDD at Ames Research Center NASA Ames Research Center
Moffett Field, CA 94035 Moffett Field, CA 94035

ABSTRACT

This paper implements and analyzes a dual-primal iterative substructuring method, that
is parallel and scalable, for the solution of a three-dimensional finite element dynamic analysis
of helicopter rotor blades. The finite element analysis is developed using isoparametric hexa-
hedral brick elements. Particular emphasis is placed on the formulation of the inertial terms
that are unique to rotary wing structures. The scalability of the solution procedure is stud-
ied using two prototype problems – one for steady hover (symmetric) and one for transient
forward flight (non-symmetric) – both carried out on up to 48 processors. In both hover and
forward flight, a linear speed-up is observed with number of processors, up to the point of
substructure optimality. Substructure optimality and the range of linear speed-up are shown
to depend both on the problem size as well as a corner based global coarse problem selection.
An increase in problem size extends the linear speed-up range up to the new substructure
optimality. A superior coarse problem selection extends the optimality to a higher number of
processors. The method also scales with respect to problem size. The key conclusion is that
a three-dimensional finite element analysis of a rotor can be carried out in a fully parallel
and scalable manner. The careful selection of substructure corner nodes, that are used to
construct the global coarse problem, is the key to extending linear speed-up to as high a
processor number as possible, thus minimizing the solution time for a given problem size.

Nomenclature

∆ = denotes incremental quantities

δ = denotes variational quantities

εij = Green-Lagrange strains

ηs = subdomain interface fluxes

κ = condition number

κij = non-linear strains

λ = interface dual variables

Ω = rotor rotational speed

ψ = blade azimuth angle

ψBI = rotation of frame B relative to I

Presented at the American Helicopter Society Annual Forum
65, Grapevine, Texas, May 27–29, 2009

σij = second Piola-Kirchhoff stresses

θ = instantaneous control angle

ω̃, ˙̃ω = skew symmetric angular velocity and accelera-
tions

εij = linear strains

~r = displacement of a point relative to inertial
frame

~xBI , ~̇xBI = displacement and velocity of frame B relative
to frame I

ξ, η, ζ = finite element curvilinear, natural, coordinate
axes

a = subscript denoting finite element nodal quan-
tities

Bs
R/E/C = subdomain Boolean restrictions

BI/B = quantity in B relative to I measured in B

C = Cauchy-Green deformation tensor

CBI = orientation of frame I relative to B

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Three-dimensional Finite Element Formulation and Scalable Domain
Decomposition for High Fidelity Rotor Dynamic Analysis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ELORET Corporation,Aeroflightdynamics Directorate (AFDD),Ames
Research Center,Moffett Field,CA,94035

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper implements and analyzes a dual-primal iterative substructuring method, that is parallel and
scalable, for the solution of a three-dimensional ?nite element dynamic analysis of helicopter rotor blades.
The ?nite element analysis is developed using isoparametric hexa- hedral brick elements. Particular
emphasis is placed on the formulation of the inertial terms that are unique to rotary wing structures. The
scalability of the solution procedure is stud- ied using two prototype problems { one for steady hover
(symmetric) and one for transient forward ?ight (non-symmetric) { both carried out on up to 48
processors. In both hover and forward ?ight, a linear speed-up is observed with number of processors, up
to the point of substructure optimality. Substructure optimality and the range of linear speed-up are shown
to depend both on the problem size as well as a corner based global coarse problem selection. An increase
in problem size extends the linear speed-up range up to the new substructure optimality. A superior coarse
problem selection extends the optimality to a higher number of processors. The method also scales with
respect to problem size. The key conclusion is that a three-dimensional ?nite element analysis of a rotor can
be carried out in a fully parallel and scalable manner. The careful selection of substructure corner nodes,
that are used to construct the global coarse problem, is the key to extending linear speed-up to as high a
processor number as possible, thus minimizing the solution time for a given problem size.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

25

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

D, D′ = linear constitutive relations

fs = subdomain force vector

f∗C = coarse problem force vector

Ha = finite element shape function for node a

I, B = inertial and non-inertial body fixed frames

I3 = unit matrix 3× 3

J = Jacobian of transformation from physical to
finite element natural coordinate axes

Ks = subdomain stiffness matrices

K∗
CC = coarse problem stiffness matrix

L = composite ply angle transformation

M = interface preconditioner

q = finite element degrees of freedom

S = discretized substructure interface

s = superscript denoting substructure quantities

Tm/c/k/f = inertial mass, damping, stiffness, and force

ug
C = global solution vector for corner nodes

us = subdomain solution vector = ∆qs

ui = physical deflections, i = 1, 2, 3 in frame B

x0
i = undeformed coordinates of a point in frame B

xi = deformed coordinates of a point in frame B

INTRODUCTION

One hundred years ago what is now called the
Poincaré-Steklov operator was introduced. This oper-
ator, which governs the interface of a problem generated
by decomposing a larger problem into many smaller sub-
problems, has spectral properties that are superior to
the original problem. In particular, its condition number
(ratio of maximum to minimum eigenvalues, which de-
termines the number of iterations needed for an iterative
solution) grows at a rate that is an order lower than that
of the original problem. Every modern method of itera-
tive substructuring is based on one or more variational
forms of this operator.

The word substructuring and the method was intro-
duced fifty years ago by Przemieniecki [1, 2]. Together
with Denke [3], Argyris and Kelsey [4], and Turner et
al. [5], they laid the foundations of displacement and force
finite element analyses of partitioned structures. These
partitioned methods were the only avenues to obtain re-
sults for practical structures for which the original prob-
lem far exceeded the capacity of computers at the time.
The method of substructures has remained the fastest
(time), most efficient (memory), most reliable (accurate),

and most flexible (heterogeneous physics and properties)
method of partitioned analysis of large scale structures.
The modern methods of primal and dual iterative sub-
structuring have their origin and genesis in these original
contributions – established long before the advent of par-
allel computers.

The advent of parallel computers opened opportu-
nity for solving each partitioned substructure using a
separate processor. A straight forward implementation,
however, leads to a dead end. First, the high condition
number and lack of sparsity of the interface equation by
itself poses a significant challenge for convergence. Sec-
ond, the condition number grows rapidly both with prob-
lem size and with number of partitions, producing a dra-
matic increase in the required number of iterations. The
recognition, that a finite element representation of the
substructure interface is precisely a discrete equivalent of
the original Poincaré-Steklov operator, allows the math-
ematical theories of domain decomposition to be brought
to bear directly towards the resolution of this key prob-
lem. Today, methods are available that precondition the
interface and solve it iteratively, in a parallel and scal-
able manner, requiring only local substructure calcula-
tions. These methods are called iterative substructuring
methods. Their objective is to provide optimal numerical
scalability, i.e. to ensure that the condition number of the
pre-conditioned interface does not grow with the number
of substructures and grows at most poly-logarithmically
with mesh refinement within each substructure.

The mathematical theory of domain decomposition
provides scalable algorithms for two broad classes of par-
titioning: overlapping and non-overlapping [6]. Over-
lapping partitioning leads to additive Schwarz methods,
which are variants of block Jacobi preconditioners. These
are widely used in fluid mechanics, but are of little im-
portance in structural mechanics – due to the very high
condition numbers (108 − 1010) and high bandwidth of
practical structures. Structural mechanics prefer non-
overlapping partitioning. They lead to iterative substruc-
turing methods, a name borrowed from, and indicative of
the deep connections to the long and successful tradition
of substructuring. Henceforth, the words ‘subdomain’
and ‘substructure’ are used synonymously.

The growth of the mathematical theory of itera-
tive substructuring can be traced to the seminal work
of Agoshkov et al. [7, 8] and Bramble et al. [9] in the
mid-1980s. The former provided a detailed analysis of
the Poincaré-Steklov operator. The latter provided one
of the earliest scalable interface preconditioners for prob-
lems governed by 2nd order elliptic partial differential
equations (henceforth, mentioned as 2nd order problems)
with homogeneous coefficients. Subsequent algorithmic
developments in this area have continued through the
1990s and 2000s (the interested reader is referred to
monographs by Quarteroni and Valli [10] and Toselli
and Widlund [11]) culminating in the increasing appli-
cation of these methods for High Performance Comput-
ing (HPC) based large scale problems of computational
mechanics (see special eds. [12, 13]). Today, Neumann-

2

Neumann type primal methods known as Balancing Do-
main Decomposition with Constraints (BDDC) (see [14]
and references therein) and the Dirichlet-Dirichlet type
dual methods known as Finite Element Tearing and In-
terconnecting (FETI) methods (see [15] and references
therein) provide scalable preconditioners that are opti-
mal up to 4th order elliptic problems that include highly
discontinuous and heterogeneous subdomains.

Both the Neumann-Neumann and FETI methods
act on the discrete equivalents of the Poincaré-Steklov
interface operator. The former acts on its primal form.
The latter acts on its dual form. A primal form consists
of variables that are a direct subset of the original un-
knowns, e.g., the interface displacements. A dual form
consists of a different set of variables that are not a sub-
set of the original unknowns, but whose equality must
still be guaranteed across the interface, e.g., the reac-
tion forces. Both methods are based on simultaneous
Dirichlet and Neumann solves within each substructure
— one for preconditioning and one for residual calcula-
tion. Note that the Neumann solves are non-invertible
for floating substructures that arise naturally from mul-
tiple partitioning of a structure. In Neumann-Neumann,
this singularity occurs in the preconditioner, in FETI this
singularity occurs in the residual calculation.

The first objective of this paper is to apply an ad-
vanced multi-level FETI method, the FETI-Dual Primal
(DP) method, pioneered by Farhat et al. [15, 16], for the
parallel solution of a large scale rotary wing structural
dynamics problem. The FETI-DP method acts both on
the primal and dual form of the interface - each form for a
separate subset of the interface. We apply this method in
the present work because there is a substantial volume of
published literature demonstrating its high level of per-
formance for large scale engineering problems (see refer-
ences above). Note, however, that both the FETI-DP
and the BDDC methods are closely connected, and we
refer the interested reader to the recent work of Mandel
et al. [17] for an excellent exposition of this connection.

The state-of-the-art in rotary wing structural mod-
eling involves a variational-asymptotic reduction of the
3-dimensional (3-D) nonlinear elasticity problem into a
2-D linear cross-section analysis and a 1-D geometrically
exact beam analysis – based on Berdichevsky [18] and pi-
oneered by Hodges and his co-workers [19]. Aeroelastic
computations are performed on the beam, followed by a
recovery of the 3-D stress field. The method is efficient
and accurate – except near end-edges and discontinu-
ities for which a 3-D analysis is still needed – as long
as the cross-sections are small compared to the wave-
length of deformations along the beam. Modern hin-
geless and bearingless rotors contain 3-D flexible load
bearing components near the hub that have short as-
pect ratios and cannot be treated as beams. Moreover,
treatment of blades, depending on their advanced geom-
etry and material anisotropy, also requires continuous
improvements based on refinements to the asymptotic
cross-section analysis [20, 21].

A second objective of this paper, therefore, is to

develop a 3-D Finite Element Model (FEM) for rotary
wing structures that can be used to analyze generic 3-D
non-beam like hubs as well as advanced geometry blade
shapes. With the emergence of rotorcraft Computational
Fluid Dynamics (CFD), physics-based models contain-
ing millions of grid points can carry out Reynolds Av-
eraged Navier-Stokes (RANS) computations on 100s of
cores, routinely, in a research environment for the ro-
tor, and even for the entire helicopter. Applications are
focused today on coupling CFD with relatively simple
engineering-level structural models. The structural ana-
lyis is carried out on a single processor while the remain-
ing processors lie idle. Therefore, the purpose of the sec-
ond objective is to explore the possibility of integrating
3-D FEM as the physics-based Computational Structural
Dynamics (CSD) model in the structures domain.

There is no question that such a capability will be
powerful. First, it will provide enabling technology for
modeling hingeless and bearingless rotors with advanced
geometries. Second, it will enable the direct calculation
of stresses on critical load bearing components near the
hub, a capability that is not available today. Third, it will
provide a true representation of the 3-D structure, con-
sistent with the high level of fidelity sought in large scale
CFD. And finally, even though this research is targeted
towards large scale HPC based analysis, as a by-product,
it will always provide a means for extracting sectional
properties with which efficient lower order design analy-
ses can still be carried out. The key question for such a
capability is that of an efficient solution procedure.

The primary objective of this paper is to answer this
key question directly. As in CFD, the tremendous ca-
pabilities of HPC is also envisioned here to be the key
technology driver and enabler.

Scope of Present Work

A parallel Newton-Krylov solver is developed in this
study for the solution of 3-D FEM analysis of rotors in
hover and forward flight. The solver is based on the
FETI-DP method of iterative substructuring. The pri-
mary emphasis in this paper is on the scalability of this
solver.

The formulation of the 3-D FEM analysis pays par-
ticular attention on the structural non-linearities and in-
ertial terms that are unique to rotary wings. The Krylov
solver is equipped with a Generalized Minimum Residual
(GMRES) update, in addition to its traditional Conju-
gate Gradient (CG) update, to accommodate the non-
symmetric nature of the rotary wing inertial terms.

Advanced finite element capabilities like locking-free
elements, hierarchical elements, nonlinear constitutive
models, composite ply modeling are beyond the scope
of this initial work. Grid generation is not part of this
endeavor. Simple grids are constructed that are adequate
for research purposes. Domain partitioning, on the other
hand, is a part of this work. Standard graph partition-
ers, which are readily available, will not suffice for reasons
described herein. Most key elements of a comprehensive

3

rotorcraft analysis are not considered at present: airloads
model, trim model, extraction of periodic dynamics, and
multibody dynamics, are all part of future work.

The paper is organized as follows. The next, i.e.,
the second section, describes the formulation of the 3-D
FEM analysis, followed by preliminary verification using
thin plate and rotating beam results. The third section
presents a brief description of the iterative substructuring
algorithm and its parallel implementation. The numeri-
cal scalability of the algorithm is established in this sec-
tion. The fourth section introduces the key components
of the 3-D rotor analysis: geometry and grids, partition-
ing and corner selection, the hover prototype, and the
transient forward flight prototype. The fifth section is
focused on scalability. Calculations performed on up to
48 processors – the maximum available to the authors
at present – are reported here. The paper ends with the
key conclusions of this work and a summary of the future
research directions that are critical to the success of this
endeavor.

3-D FINITE ELEMENTS FOR ROTORS

The Finite Element formulation is based on well es-
tablished, standard procedures [22, 23]. The non-linear,
geometrically exact implementation, follows an incre-
mental approach, using Green-Lagrange strain and sec-
ond Piola-Kirchhoff stress measures, within a total La-
grangian formulation. The main contribution here is the
formulation of the inertial terms that are unique to ro-
tary wings.

Strain Energy

Let the deformed coordinates of a material point in
the blade at any instant be given by

x1 = x0
1 + u1(x0

1, x
0
2, x

0
3)

x2 = x0
2 + u2(x0

1, x
0
2, x

0
3)

x3 = x0
3 + u3(x0

1, x
0
2, x

0
3)

(1)

where x0
i and ui, i = 1, 2, 3 denote the undeformed

coordinates and the 3-D deformation field respectively.
The deformation gradient of the point with respect to its
undeformed configuration is then ∇

∇ =

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

 where xi,j =

∂xi

∂x0
j

(2)

The Green-Lagrange strain relates the deformed length
of a line element, dl, to its original length on the unde-
formed blade, dl0, in the following manner

εij d xi d xj = (1/2)[(dl)2 − (dl0)2] (3)

where (dl)2 = d xi d xi and (dl0)2 = d x0
i d x0

i . The
Green-Lagrange strain tensor follows

ε = (1/2)(C − I3) (4)

Here I3 is a 3× 3 unit matrix and C is the left Cauchy-
Green deformation tensor given by

C = ∇T ∇ (5)

The elements of the Green-Lagrange strain tensor have
the well-known form

εij =
1
2

(
∂ui

∂x0
j

+
∂uj

∂x0
i

+
∂uk

∂x0
i

∂uk

∂x0
j

)
k = 1, 2, 3 (6)

The total Lagrangian formulation is based on virtual
work per unit original volume. The stress measure that
is energetically conjugate to Green-Lagrange strain is the
second Piola-Kirchhoff stress tensor, σ. That is, the
strain energy of the deformed structure can now be cal-
culated using the above strain and stress measures with
integration over original volume. The variation in strain
energy is then simply

δU =
∫

V

σ δεij dV (7)

For non-linear analysis, an incremental procedure is fol-
lowed. The strain at a current state t + ∆t is expressed
in terms of incremental strains measured from a previous
state t

εij(t + ∆t) = εij(t) + ∆εij (8)

where ∆εij is the incremental strain. It must be under-
stood that the variation in strain at the current state is
simply the variation in incremental strains. That is,

δεij(t + ∆t) = δ∆εij (9)

The incremental strain is related to the incremental de-
formations ∆ui.

∆ui = xi(t + ∆t)− xi(t)
= ui(t + ∆t)− ui(t)

(10)

Substitution of the strain expression Eq. 6 in Eq. 8 and
use of ui(t + ∆t) = ui(t) + ∆ui gives

∆εij =
1
2

(
∂∆ui

∂x0
j

+
∂∆uj

∂x0
i

+
∂uk

∂x0
i

∂∆uk

∂x0
j

+
∂∆uk

∂x0
i

∂uk

∂x0
j

)

+
1
2

∂∆uk

∂x0
i

∂∆uk

∂x0
j

= ∆εij + ∆κij k = 1, 2, 3

(11)

where the linear and non-linear strains are separately
denoted as εij and κij . The variations follow

δ∆εij = δ∆εij + δ∆κij (12)

where
δ∆εij =

1
2

(
∂δ∆ui

∂x0
j

+
∂δ∆uj

∂x0
i

+
∂uk

∂x0
i

∂δ∆uk

∂x0
j

+
∂δ∆uk

∂x0
i

∂uk

∂x0
j

)

δ∆κij =

1
2

(
∂∆uk

∂x0
i

∂δ∆uk

∂x0
j

+
∂δ∆uk

∂x0
i

∂∆uk

∂x0
j

)

(13)

4

Similarly decompose the stress

σij(t + ∆t) = σij(t) + ∆σij (14)

Use Eqs. 12, 13 and 14 in Eq. 7 to obtain

δU =
∫

V

∆σij δ∆εij dV +
∫

V

σij(t) δ∆εij dV +

∫

V

σij(t) δ∆κij dV +
∫

V

∆σij δ∆κij dV

(15)

The integration, as before, is over the original volume.
This expression is exact for large deformations, large
strains, and material non-linearities. For linear elastic
materials, the incremental stress is related to the incre-
mental linear strain by a constitutive relation of the form

∆σij = Dijmn∆εmn

Dijmn has the general form LT D′ L with D′ contain-
ing the material constitution and L the composite ply
angle transformation. The first term in Eq. 15 then be-
comes the standard linear finite element term. The sec-
ond term is an incremental term involving the existing
state of stress and linear strains. The third term, under-
lined, is the key term for rotorcraft. It is an incremental
term involving the existing state of stress and the non-
linear strains. This term produces the structural cou-
plings between axial and transverse deformations (torsion
is not a separate state of motion in 3-D but a function
of transverse deformations) in response to rotational ef-
fects. It carries within it the classical extension-bending
and flap-lag structural couplings. The fourth term is
dropped as part of linearization, with the assumption
Dijmnεmnδκij ≈ 0. The final expression then becomes

δU =
∫

V

Dijmn ∆εmn δ∆εij dV +

∫

V

σij(t) δ∆εij dV +
∫

V

σij(t) δ∆κij dV

(16)

Iterations are required, of course, primarily for σij(t) but
also for the linearization. The latter is usually insignif-
icant. For example, for a static solution, given a pre-
scribed, deformation-independent, non-inertial external
forcing, the equation of motion takes the form

δU = δWE

where δWE is the external virtual work. The iterative
procedure is then

∫

V

Dijmn ∆εmn δ∆εij dV +
∫

V

σij(t) δ∆κij dV

= δWE −
∫

V

σij(t) δ∆εij dV

(17)

readily recognized as a Newton-Raphson iteration. If
σij(t) is updated only on the right hand side, the proce-
dure is a modified Newton iteration. For a rotor, it must

be updated on both sides initially to obtain the correct
non-linear stiffness. Thereafter, modified Newton itera-
tion is enough for the purposes of airload non-linearities.

Kinetic Energy

The variation in kinetic energy or the virtual work
by inertial forces is given by

δT = −δWI =
∫

V

ρ ~̈r · δ~r dV

where ~̈r and δ~r are the acceleration and virtual displace-
ment of a material point P on the blade relative to an
inertial frame I. Let P lie in a non-inertial frame B.
The frames I and B are associated with corresponding
coordinate axes or basis. At any instant, frame B has a
displacement ~xBI relative to the frame I and an orienta-
tion defined by a rotation matrix CIB . CIB defines the
orientation of I relative to B, i.e. it rotates the axis from
B to I. If the components of ~xBI expressed in B and I
basis are denoted by xBI/B and xBI/I , then

xBI/I = CIBxBI/B

Recall, that the time derivative of the rotation matrix
is related to the skew symmetric angular velocities by

ĊIB = CIBω̃BI/B = −ω̃IB/ICIB

where ω̃BI/B is the angular velocity of B relative to I
and measured in B, and ω̃IB/I is the angular velocity
of I relative to B and measured in I. The components
of the motion of the point P relative to I and B and
expressed in I and B frames satisfy

rPI/I = CIB(xBI/B + rPB/B)

ṙPI/I = CIB(vBI/B + ṙPB/B + ω̃BI/BrPB/B)

r̈PI/I = CIB(v̇BI/B + ω̃BI/BvBI/B + r̈PB/B+

2 ω̃BI/B ṙPB/B + ω̃BI/Bω̃BI/BrPB/B+
˙̃ωBI/BrPB/B)

(18)

where the frame motions have been expressed in body-
fitted coordinates as ẋBI/I = vBI/I = CIBvBI/B and
ẍBI/I = CIB v̇BI/B +CIBω̃IB/BvBI/B . The components
of virtual displacement are

δrPI/I = CIB(δxBI/B + δψ̃BI/BrPB/B + δrPB/B)

= CIB(δxBI/B − r̃PB/BδψBI/B + δrPB/B)

= CIBRT δq

(19)

where

R =

I
−r̃PB/B

RT
b

 δq =

δxBI/B

δψBI/B

δqb

xBI/B and ψBI/B are the rigid body translational and
rotational states of frame B. The virtual displacement

5

δrPB/B in B frame is written in terms of the variations
in finite element degrees of freedom δrPB/B = RT

b δqb.
The kinetic energy is then

δT =
∫

V

ρ (δrPI/I)T r̈PI/I dV (20)

In general, frame B may contain a flexible component.
For a simple illustration, consider B to be the unde-
formed blade rotating frame, containing the entire blade,
with origin at the rotor hub. It undergoes control mo-
tions θ, θ̇, θ̈ with respect to another rotating frame with
origin at the hub. This frame undergoes rotational mo-
tions Ω, Ω̇, Ω̈ with respect to a non-rotating inertial frame
I at the hub. B has no rigid body states with respect to I.
Thus δxBI/B = 0, δψBI/B = 0, and vBI/B = v̇BI/B = 0.
It follows

CIB =

cψ −sψcθ sψsθ

sψ cψcθ −cψsθ

0 sθ cθ

 (21)

where ψ = Ωt is the blade azimuth angle, θ is the
instantaneous control angle, and cθ = cos θ, sθ = sin θ
etc.

ωBI/B =

θ̇
0
0

T

eB +

0
0
Ω

T

eI =

θ̇
Ωsθ

Ωcθ

T

eB

(22)

eB and eI are the unit basis vectors in the B and I frame
respectively. The non-zero components of r̈PI/I in the
kinetic energy expression Eq. 20 then become

r̈PB/B =

ü1

ü2

ü3

 (23)

2ω̃BI/B ṙPB/B = 2

0 −Ωcθ Ωsθ

Ωcθ 0 −θ̇

−Ωsθ θ̇ 0

u̇1

u̇2

u̇3

(24)

ω̃BI/B ω̃BI/B rPB/B =

−Ω2 θ̇Ωsθ θ̇Ωcθ

θ̇Ωsθ −Ω2c2
θ − θ̇2 Ω2cθsθ

θ̇Ωcθ Ω2cθsθ −Ω2s2
θ − θ̇2

x1

x2

x3

 (25)

˙̃ωBI/BrPB/B =

0 −Ω̇cθ + Ωθ̇sθ Ω̇sθ + Ωθ̇cθ

Ω̇cθ − Ωθ̇sθ 0 θ̈

−Ω̇sθ − Ωθ̇cθ θ̈ 0

x1

x2

x3

(26)

The virtual displacement is simply the variation of
the incremental displacements

δrPB/B = δu; δrPI/I = CIBδu (27)

Thus, the kinetic energy Eq. 20 takes the following form

δT =
∫

V

δuT ρ (Tm ü + Tc u̇ + Tk u + Tf)dV (28)

With the simplest assumption of only a collective, and
steady rotation, we have from Eq. 23–Eq. 26 the following
mass, damping, stiffness, and force contributions from
inertia.

Tm = I3

Tc = −2Ω

0 cθ −sθ

−cθ 0 0
sθ 0 0

Tk = −Ω2

1 0 0
0 c2

θ −sθcθ

0 −sθcθ s2
θ

Tf = Tk [x0
1 x0

2 x0
3]T

(29)

Virtual Work by External Forces

A surface lies, always, on one or more of the element
faces, defined by its natural coordinates ξ ± 1, η ± 1, or
ζ ± 1 (see following section). A differential change dξ
in the natural coordinates (ξ, η, ζ) creates the following
changes in the geometric coordinates (x1, x2, x3).

dxi = xi,ξdξ =
N∑

k=1

Hk,ξx
k
i i = 1, 2, 3 (30)

Denote the vector [x1,ξ, x2,ξ, x3,ξ] as x,ξ. Similarly, dif-
ferential changes dη and dζ create the vectors xi,ηdη and
xi,ζdζ, i = 1, 2, 3, in the geometric coordinates. The area
dξdη, for example, then corresponds to the area of a par-
allelogram between the two vectors x,ξdξ and x,ηdη in
the geometric domain, defined by their cross product or
cross product matrices: x,ξ × x,η = −x̃,ξx,η = x,ξx̃,η

x,ξ × x,η =

x2,ξx3,η − x2,ηx3,ξ

x3,ξx1,η − x3,ηx1,ξ

x1,ξx2,η − x1,ηx2,ξ

For example, if normal pressure p on an elemental face
defined by ζ =constant produces a virtual work p d ~A ·δ~u,
the components of d ~A are simply x,ξx̃,η dξ dη. The com-
ponents of δ~u are the virtual deformations δ[u1 u2 u3]T =
δqT HT , where H are structural shape functions (see next
section). The virtual work expression is then

δWE = δqT

∫

A

pHT x,ξx̃,η dξ dη = δqT Q (31)

A general surface stress distribution σS is incorporated
in exactly the same manner using (σS ·d ~A) · δ~u as virtual
work.

δWE = δqT

∫

A

HT σS x,ξx̃,η dξ dη = δqT Q (32)

6

Because fluid stress are deformation dependent, the area
must be evaluated at the deformed configuration. The
deformed configuration is not known a priori, therefore,
iterations are required. This is discussed further in the
subsection ‘Steady Hover Prototype’ under ‘3-D FEM
Rotor Analysis’.

Brick Finite Elements

The analysis of bending dominated problems involv-
ing thin structures using 3-D elements suffer from severe
stiffening known as element locking as the element thick-
ness tends to zero. A simple but effective way to pre-
vent locking is to use higher-order elements – as in this
study – containing sufficient number of internal nodes.
Devising more efficient lower-order locking-free brick el-
ements, based on reduced-integration or Enhanced As-
sumed Strain methods are beyond the scope of this initial
development. The main concern at present is accuracy.

-1

0

1

-1
0

1

-1

0

1

ξ
η

ζ

1

3

5

7

21
27

22

25

26

23

24

9

10 11

12

13

16

18

17

20

8

15
6

14

2
4

19

ζ

η

ξ

 (a) Element in physical
coordinates (only edge nodes shown)

 (b) Element in natural
coordinates (all nodes shown)

Figure 1: 27-node isoparametric, hexahedral
brick element in curvilinear natural coordi-
nates; 4× 4× 4 Gauss integration points.

Figure 1 shows an isoparametric, hexahedral,
quadratic brick element developed in this study. It con-
sists of 8 vertex nodes and 19 internal nodes – 12 edge
nodes, 6 face nodes, and 1 volume node. Within isopara-
metric elements, geometry and displacement solution are

both interpolated using the same shape functions. Thus

x0
i =

N∑
a=1

Ha x0
i a; ∆ui =

N∑
a=1

Ha ∆ui a

xi =
N∑

a=1

Ha xi a; ui =
N∑

a=1

Ha ui a

(33)

where a is the elemental node point index. N = 27. The
shape functions are expressed in element natural axes ξ,
η, and ζ, where −1 ≤ ξ, η, ζ ≤ 1. We consider Lagrange
polynomials in each direction.

Ha = Ha(ξ, η, ζ) = Ln
I (ξ) Lm

J (η) Lp
K(ζ) (34)

with n = m = p = 2; and each of I, J,K vary as 1, 2, 3
respectively. The second-order polynomials in, say η, are
η(η − 1)/2, 1 − η2, and η(η + 1)/2. Based on the local
node ordering shown in Fig. 1(b), we have for example
the shape function corresponding to node 11

H11 = L2
2(ξ) L2

3(η) L2
1(ζ) =

1
4

η ζ(1− ξ2) (η + 1) (ζ − 1)

The strains require the derivatives of the shape functions
with respect to geometric coordinates

∂ui

∂x0
j

=
N∑

a=1

(
∂Ha

∂x0
j

)
ui a;

∂∆ui

∂x0
j

=
N∑

a=1

(
∂Ha

∂x0
j

)
∆ui a

(35)

These are calculated from the derivatives with respect to
natural coordinates as follows

∂Ha

∂ξ
∂Ha

∂η
∂Ha

∂ζ

 =

∂x0
1

∂ξ
∂x0

2
∂ξ

∂x0
3

∂ξ
∂x0

1
∂η

∂x0
2

∂η
∂x0

3
∂η

∂x0
1

∂ζ
∂x0

2
∂ζ

∂x0
3

∂ζ

︸ ︷︷ ︸

∂Ha

∂x0
1

∂Ha

∂x0
2

∂Ha

∂x0
3

J

(36)

The evaluation of the Jacobian, J , is straight forward
using the derivatives of the shape functions with respect
to element natural axes and the location of the nodal
points (i.e. the grid points), i.e., the first of Eq. 33

J =

H1,ξ H2,ξ . . . HN,ξ

H1,η H2,η . . . HN,η

H1,ζ H2,ζ . . . HN,ζ

x0
11 x0

21 x0
31

x0
12 x0

22 x0
32

.

.

.
x0

1N x0
2N x0

3N

(37)

The required derivatives are then

∂Ha

∂x0
1

∂Ha

∂x0
2

∂Ha

∂x0
3

 =

1
J

∂Ha

∂ξ
∂Ha

∂η
∂Ha

∂ζ

 (38)

7

BL0 =

H1,1 0 0 H2,1 . . . 0
0 H1,2 0 0 . . . 0
0 0 H1,3 0 . . . HN,3

H1,2 H1,1 0 H2,2 . . . 0
0 H1,3 H1,2 0 . . . HN,2

H1,3 0 H1,1 H2,3 . . . HN,1

BL1 =

l11H1,1 l21H1,1 l31H1,1 l11H2,1 . . . l31HN,1

l12H1,2 l22H1,2 l32H1,2 l12H2,2 . . . l32HN,2

l13H1,3 l23H1,3 l33H1,3 l13H2,3 . . . l33HN,3

l11H1,2 + l12H1,1 l21H1,2 + l22H1,1 l31H1,2 + l32H1,1 l11H2,2 + l12H2,1 . . . l31HN,2 + l32HN,1

l12H1,3 + l13H1,2 l22H1,3 + l23H1,2 l32H1,3 + l33H1,2 l12H2,3 + l13H2,2 . . . l32HN,3 + l33HN,2

l11H1,3 + l13H1,1 l21H1,3 + l23H1,1 l31H1,3 + l33H1,1 l11H2,3 + l13H2,1 . . . l31HN,3 + l33HN,1

Henceforth the above derivatives are denoted as
Ha,1, Ha,2, and Ha,3. In addition, the first quantity in
Eq. 35 is denoted by lij , i.e.,

lij =
N∑

a=1

Ha,j ui a

From the linear strain ∆εij as defined in Eq. 11, the
strain-displacement relation now takes the following form

∆ε̂ = (BL0 + BL1)∆q (39)

where

∆ε̂T = ∆[ε11 ε22 ε33 2ε12 2ε23 2ε13]

∆qT = [u11 u21 u31 u12 u22 u32 . . . u1N u2N u3N]
(40)

and the expressions for BL0 and BL1 are given above.
The first term in the strain energy Eq. 16 then becomes

δ∆qT

∫

V

(BL0 + BL1)T D (BL0 + BL1) dV

 ∆q

(41)

The second term is treated is the same manner to obtain

δ∆qT

∫

V

(BL0 + BL1)T σ̂(t) dV

∆q (42)

where σ̂(t) = [σ11 σ22 σ33 σ12 σ23 σ13]T . Consider the
non-linear incremental strain ∆κij as defined in Eq. 11.
It is directly in a quadratic form, and hence the third
term can be re-arranged as

δ∆qT

∫

V

B̄T
NL σ̄(t) B̄NL dV

∆q (43)

with the matrices having special forms

σ̄(t) =

σij(t) 0 0
0 σij(t) 0
0 0 σij(t)

 ; 0 =

0 0 0
0 0 0
0 0 0

B̄NL =

BNL 0 0
0 BNL 0
0 0 BNL

 ; 0 =

0
0
0

BNL =

H1,1 0 0 H2,1 0 0 . . . HN,1

H1,2 0 0 H2,2 0 0 . . . HN,2

H1,3 0 0 H2,3 0 0 . . . HN,3

The volume integrations are performed using 4 Gauss
points along each natural coordinate axes, a total of 64
integration points. Note that

dV = det(J) dξ dη dζ

VERIFICATION OF 3-D FEM

A preliminary verification of the 3-D FEM analysis is
carried out by reproducing non-rotating plate and rotat-
ing beam frequencies. The former verifies the locking-free
behavior. The later verifies the non-linear implementa-
tion.

Here, and henceforth, a 3-D grid is denoted as
n1 × n2 × n3 or (n1, n2, n3). They denote the number of
elements along span, chord, and thickness, respectively.

Thin Plate Frequencies

The locking-free behavior of the brick elements, in
shear, is verified by re-producing classical Kirchhoff thin
plate frequencies for a square cantilevered plate.

The plate is modeled using a 4 × 4 × 4 brick grid
(Fig. 2), i.e., there are 4 layers of bricks across thickness.
Starting from a solid cube, the variation in natural fre-
quencies with a gradual reduction in thickness is shown
in Fig. 3. It is clear that the frequencies approach those
of a thin plate. The plate frequencies are obtained from
converged rectangular plate finite elements and are vali-
dated easily with classical solutions [24]. The discrepancy
at the higher modes are mostly resolved with a finer mesh
converged solution (Table 1). The remaining differences
are due to shear, not present in the Kirchhoff solution,
but present in the brick solution.

8

0

0.5

1

0

0.5

1

t

aa

Figure 2: A cantilevered square plate
with 4×4×4 brick element grid; thick-
ness t = 1 in; dimensions a = 39.4 in

0 10 20 30 40
0

20

40

60

80

100

120

Thickness, inches

F
re

qu
en

ci
es

, N
on

−
di

m
.

Thin plate Solid cube

Figure 3: Natural frequencies of a solid cube ap-
proaching Kirchhoff thin plate frequencies (sym-
bols) with reduced thickness

Mode 4× 4× 4 8× 8× 4 Kirchhoff
number bricks bricks plate

1 3.55 3.50 3.47
2 8.68 8.53 8.51
3 22.93 21.58 21.29
4 28.16 27.29 27.19
5 32.84 31.19 30.96
6 56.78 54.31 54.13
7 71.19 63.09 61.29
8 74.75 64.96 64.16
9 83.68 72.50 70.98

Table 1: Plate frequencies using 3-D FEM: nondi-
mensionalized w.r.t.

√
D/ρta4, a: square plate di-

mension, t: thickness, ρ: density, D = Et3/12(1 −
ν2), E: Young’s Modulus and ν: Poisson’s ratio

Slender Beam Frequencies

Next, the brick element is verified using a slender
geometry that behaves as a beam over a large variation
of thickness and aspect ratios. The bending frequencies
are easy to re-produce, we focus on torsion. Consider
a uniform beam of aspect ratio 100 and a square cross-
section, i.e., dimensions of 100c× c× c, in length, width,
and thickness. The torsion frequencies converge towards
Euler-Bernoulli (EB) values with 4 to 9 cross-section ele-
ments (Table 2) for this simple geometry. The remaining
difference stems from span-wise resolution.

The effect of span-wise resolution is shown in the
first row of Table 3, starting from 8 × 3 × 3 grid as
the baseline. The higher (second) torsion frequency is
shown. Span-wise resolution becomes more important as
the beam thickness is reduced. This is shown in the sub-
sequent rows and columns of Table 3. The rows show
the variation of torsion frequency with a progressively
thinner beam. The columns show the effect of span-wise

section grid Torsion 1 Torsion 2
1×1 1.710 5.132
2×2 1.586 4.758
3×3 1.577 4.733
4×4 1.576 4.728
5×5 1.575 4.726

Table 2: Non-rotating beam torsion frequencies
vs. cross-section grid refinement; 8 span-wise
elements; nondimensionalized w.r.t.

√
GJ/IL2;

EB values are 1.571 and 4.712; beam dimension:
100c× c× c

Thickness n1 = 8 n1 = 16 n1 = 20
t
c 4.733 4.726 4.725

c/2 4.757 4.746 4.742
c/4 4.824 4.794 4.784
c/8 4.886 4.839 4.824

Table 3: Non-rotating second torsion frequency vs.
span-wise grid refinement; grids are n1 × 3 × 3;
nondimensionalized w.r.t.

√
GJ/IL2; EB value is

4.712; beam dimension: 100c× c× t

refinement for each thickness. There is increased devia-
tion from Euler-Bernoulli values as the thickness reduces.
With thickness fixed at c/4 and grid at 16 × 3 × 3, the
aspect ratio of the beam is now progressively reduced.
Table 4 shows that from 100 to 20 the frequencies re-
main nominally constant. At aspect ratio 5 there is still
only an error of 5 − 6%. This deviation stems clearly
from the short aspect ratio of the problem – even though
its exact nature and source is not studied here in detail.

The configuration with aspect ratio 20, i.e. dimen-
sions 20c× c× c/4, is now used to compare the rotating
frequencies. The material modulii are E = 8.2700× 107

9

(a) Mode 3: Flap 2 (b) Mode 4: Lag 1

(c) Mode 5: Flap 3 (d) Mode 6: Torsion 1

0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

30

35

40

Normalized Rotor Speed

F
re

qu
en

cy
, H

z

3D FEM

beam

(e) Fan plot showing rotating frequencies

Figure 4: Rotating frequencies and mode shapes of an uniform soft in-plane hingeless rotor of aspect
ratio 20, thickness 25% chord; 3-D bricks vs 1-D beam; 16× 3× 3 grid

Aspect Torsion 1 Torsion 2
Ratio
100 1.598 4.794
40 1.599 4.799
20 1.603 4.813
15 1.606 4.826
10 1.615 4.860
8 1.622 4.890
6 1.635 4.919
5 1.645 4.991
4 1.662 5.064
3 1.794 5.478

Table 4: Non-rotating torsion frequencies vs. as-
pect ratio; 16 × 3 × 3 grid; nondimensionalized
w.r.t.

√
GJ/IL2; EB values remain 1.571 and 4.712

for all aspect ratios.

Pa and G = 3.4458 × 107 Pa (Poisson’s ratio ν = 0.2),
density is ρ = 192.2208 kg/m3, and the dimension
c = 0.0864 m. The rotation axis is at mid-chord.

A few of the key rotating modes are shown in
Figs. 4(a)– 4(d). The frequency plot, Fig. 4(e), shows
the the beam frequencies are almost exactly reproduced
by 3-D FEM – and the small grid size of 16 × 3 × 3 is
adequate for this simple problem. Note that this serves
as a verification of the non-linear formulation. The tor-
sion frequency shows an error of 5% consistent with the
deviation in the non-rotating case at this level of grid
refinement. The torsion frequency is relatively high for
this structure, and occurs only as the sixth mode. The
rotating frequencies for Ω = 27 rad/s are tabulated in
Table 5.

Mode Beam freqs. 3-D freqs. Mode
no. (/rev) (/rev) type
1 0.826 0.824 Lag 1
2 1.059 1.058 Flap 1
3 2.768 2.769 Flap 2
4 5.058 5.006 Lag 2
5 5.211 5.223 Flap 3
6 6.431 6.625 Torsion 1
7 8.542 8.597 Flap 4

Table 5: Rotating frequencies for a soft in-plane
hingeless rotor; 16× 3× 3 grid in 3-D

ITERATIVE SUBSTRUCTURING USING
PARALLEL KRYLOV SOLVER

The parallel Krylov solver developed in this study
to provide an efficient and scalable 3-D FEM solution is
described in this section.

The effectiveness of the method of substructures in
solving large scale problems is mentioned already in the
introduction. Each substructure (or subdomain) can use
a solver tailored to its local condition number. Most
often, for reasons cited in the introduction, the substruc-
tures are required to be solved using direct factorization.
This is the approach taken in the present paper. Iterative
substructuring then provides a preconditioned iterative
solver for the substructure interface problem.

The interface problem is more amenable to an iter-
ative solver, unlike the substructures themselves, as its
condition number (ratio of maximum to minimum eigen-
values) grows with substructure mesh resolution at a rate
that is one order lower compared to the original problem

10

— i.e. by O(h−1) for 2nd order and by O(h−3) for 4th
order PDEs where h is a typical mesh resolution within
each substructure. However, it also grows necessarily at
O(H−1) where H is an average subdomain size. Indeed,
for a 2nd order, elliptic, positive definite, and coercive
operator, and an uniform finite element meshing, the pre-
cise condition number κ of the interface S is proven to
be [25]

κ(S) ≤ c
H

h H2
m

where H is the maximum and Hm is the minimum
subdomain size. c is a constant independant of h, H,
and Hm. The objective of iterative substructuring is to
provide parallel preconditioning methods such that the
preconditioned interface problem has a condition number
independent of both h and H. Such a preconditioner is
called an optimal preconditioner.

The dependence on 0(H−2
m) cannot be removed with-

out a higher level coarse problem – a mechanism to prop-
agate local substructure information globally. Communi-
cation only between neighboring subdomains will always
show this dependence. In FETI-DP, the coarse problem
is constructed out of a selected set of substructure corner
nodes.

The building blocks of a preconditioned Krylov
solver (to solve M−1Ax = M−1b, where M is the pre-
conditioner) are: (1) residual calculation r = b−Ax, (2)
preconditioning M−1r and, (3) a general matrix-vector
multiplication procedure Av. An iterative substructur-
ing algorithm computes these building blocks in a paral-
lel manner. Once the building blocks are provided, con-
structing an iterative update (Krylov update) using these
blocks is straight forward. The blocks and the update
then form the Krylov solver. Unlike a simple Conjugate
Gradient (CG) update, a Generalized Minimum Residual
(GMRES) update, however, poses a few parallelization
issues of its own.

The iterative substructuring algorithm, its numeri-
cal scalability, and the parallelization issues of the CG
and GMRES updates are documented below.

The FETI-DP Algorithm

For a 3-D substructure, each interface node can be a
face, edge, or vertex node. Of these, the edge and vertex
nodes — that are common to more than two substruc-
tures — are designated as corner nodes. The degrees of
freedom (DOFs) associated with the corner nodes are for-
mulated as a primal interface. The rest are formulated
as a dual interface. The corner nodes form the coarse
problem, and, are key to ensuring optimal scalability.

The number of DOFs associated with a corner de-
pend on the order of the problem, e.g., 3 for 2nd order
brick FEM or 6 for 4th order plate or shell elements.
Thus, it renders the coarse mesh automatically denser
with increase in order. The FETI-DP method and its im-
plementation follows entirely the work of Refs. [15, 16].
A detailed exposition of our implementation is not pro-

vided, only a brief description of the key components are
summarized below.

If the nodes of a subdomain are re-ordered with in-
ternals first (Is), followed by the interface edges and faces
(Γs

E), and then the corners (Γs
C), where the subscript s

denotes subdomain quantities, then a subdomain matrix,
say the stiffness matrix, takes the following form

Ks =

Ks
II Ks

IE Ks
IC

Ks
EI Ks

EE Ks
EC

Ks
CI Ks

CE Ks
CC

 =

[
Ks

RR Ks
RC

Ks
CR Ks

CC

]

(44)

where the internal and edge nodes are denoted together
as Rs nodes. The subdomain forcing, fs, and unknowns,
us, are correspondingly

fs =
(

fs
R

fs
C

)
us =

(
us

R

us
C

)
(45)

with

us
R =

(
us

I

us
E

)
fs

R =
(

fs
I

fs
E

)
(46)

Two Boolean restrictions are defined for each subdomain.
The first Boolean restriction, Bs

R, restricts us
R to us

E , and
assigns a +1 or −1 sign such that equality of the interface
degrees of freedom are guaranteed upon convergence.

∑
s

Bs
Rus

R = 0

The summation sign denotes assembly over sub domains.
The second Boolean restriction, Bs

C , restricts the global
corner nodes to subdomain corners. Note that, for a re-
ordered subdomain, the first restriction, Bs

R has the form
and size

←− Is −→ ←− Γs
E −→

Bs
R =

0
... Bs

E

0

↑
Γs

E

↓
(47)

where Bs
E is a diagonal matrix with entries +1 or −1.

The dual-primal procedure computes a set of dual vari-
ables associated with the interface which on convergence
allows the recovery of the subdomain internal and edge
DOFs us

R as

Ks
RRus

R = fs
R −Bs

R
T λs −Ks

RCBs
Cug

C (48)

and all the global corner DOFs ug
C as

K∗
CC ug

C = FCRλ + f∗C (49)

where λ and λs are the dual variables and their subdo-
main restrictions. The corner problem, i.e. the coarse
grid problem, is also constructed subdomain by subdo-
main. Formally,

K∗
CC =

∑
s

Bs
C

T
[
Ks

CC −Ks
CRKs

RR
−1Ks

RC

]
Bs

C

FCRλ =
∑

s

Bs
C

T Ks
CRKs

RR
−1Bs

R
T λs

f∗C =
∑

s

Bs
C

T
[
fs

C −Ks
CRKs

RR
−1fs

R

]
(50)

11

The solve, however, is carried out in every subdomain.
Thus, before the interface iterations begin, the subdo-
main contributions to K∗

CC are constructed and factor-
ized in every subdomain, and communicated globally.
Thereafter, during the Krylov iterations, the coarse prob-
lem is only a repeated right hand side solve.

The building blocks of the Krylov solver are briefly
stated below.

Residual calculation

The residual is calculated in two parts from Eq. 48.

r =
∑

s

Bs
Rus

R = r1 + r2 (51)

The first part r1 is calculated as

r1 =
∑

s

Bs
RKs

RR
−1fs

R −
∑

s

Bs
RKs

RR
−1Bs

R
T λs

(52)

The second part r2 is calculated after the coarse solve

r2 = −
∑

s

Bs
RKs

RR
−1Ks

RCBs
Cug

C (53)

Using Eq. 49, the total residual then takes the form
d − Fλ. Note that the residual calculation requires
Ks

RR
−1. Therefore, during subdomain partitioning, the

corner node selection must ensure null kernels.

Preconditioner

The subdomain residuals, rs, are used to construct
subdomain fluxes

ηs = Ks
EIw

s + Ks
EE Bs

Ers (54)

with ws obtained using subdomain Dirichlet solves

ws = −Ks
II
−1Ks

IE Bs
Ers (55)

from which the preconditioned residual is generated

M−1r =
∑

s

Bs
Eηs (56)

Expanding the above expressions, we have, formally

M−1 =
∑

s

Bs
R

[
0 0
0 Ss

EE

]
Bs

R
T (57)

where Ss
EE are the subdomain Schur complement matri-

ces. A more efficient preconditioner (but not optimal) is
obtained by skipping the Dirichlet solve above and cal-
culating the fluxes directly as

ηs = Ks
EE Bs

Ers

This leads formally to

M−1 =
∑

s

Bs
R

[
0 0
0 Ks

EE

]
Bs

R
T (58)

where the Schur complement matrices have been approx-
imated by their leading terms. The two preconditioners
above are called the Dirichlet and Lumped precondition-
ers. All results shown in this paper use the Dirichlet
preconditioner, even though for 3-D brick problems the
Lumped preconditioner is obviously more efficient.

Matrix-vector multiplication

This is identical to the residue calculation, except
us

R is now calculated in Eq. 48 using Bs
R

T vs on the right
hand side, instead of fs

R − Bs
R

T λs. vs is the subdomain
restriction of a global vector v that is to be multiplied.

Figure 5: A 4 × 4 plate partitioning; 16
elements in each partition; H = 1/4, h =
1/16; Interface and corner nodes shown
in circles and squares respectively.

Figure 6: A 8 × 8 plate partitioning; 16
elements in each partition; H = 1/8, h =
1/32; Interface and corner nodes shown
in circles and squares respectively.

Numerical scalability

For a symmetric and coercive elliptic operator the
condition number of the preconditioned FETI-DP inter-
face problem can be shown to grow as

κ(S) = O

(
1 + log

H

h

)m

; where m ≤ 3

If the subdomains have size H, and the finite element
mesh has size h, then the condition number of the in-
terface does not grow with the number of subdomains

12

as long as the mesh within each subdomain is refined
to keep H/h constant. This is the definition of optimal
numerical scalability. Thus, a bigger problem with addi-
tional subdomains require the same iteration count as a
smaller problem.

The optimality of the algorithm is verified on a can-
tilevered square plate of unit dimensions. Plate bending,
like beam bending, is governed by 4th order partial differ-
ential equations and is considered a challenge for iterative
solvers because their condition numbers grow at a rate
O(h−4). Tables 6 and 7 show that the iteration count
increases with increase in H/h (Table 6), and decreases
with decrease in H/h (Table 7). However, if H/h is held
fixed, Table 8 shows, as desired, the iteration count re-
mains relatively constant. Thus, the two plate problems
shown in Figs. 5 and 6 converge at the same rate (see
rows marked with⇐ in Table 8)— even though the latter
is four times larger.

h ns nDOF FETI-DP FETI-DP
CG GMRES

1/8 16 216 18 21
1/12 16 468 23 26
1/16 16 816 26 31
1/20 16 1260 29 36
1/24 16 1800 32 39
1/32 16 3168 37 46

Table 6: Iteration count vs. increase in mesh
refinement. Total number of subdomains fixed
ns=16, i.e., H fixed. H/h increased.

H ns nDOF FETI-DP FETI-DP
CG GMRES

1/3 9 1260 31 46
1/4 16 1260 32 41
1/6 36 1260 29 33
1/8 64 1260 25 29
1/12 144 1260 21 23

Table 7: Iteration count vs. increase in number
of subdomains. Total problem size or number of
DOFs fixed h = 1/24, i.e., h fixed. H/h decreased.

h ns nDOF FETI-DP FETI-DP
CG GMRES

1/12 9 468 23 29
1/16 16 816 26 31⇐
1/20 25 1260 28 32
1/24 36 1800 29 33
1/28 49 2436 30 34
1/32 64 3168 30 34⇐

Table 8: Iteration count vs. increase in number of
subdomains for an increasing total problem size.
Total number of DOFs increases, i.e., h decreases;
Total number of subdomains increases, i.e., H de-
creases; but H/h fixed.

Parallel Implementation of CG

A standard Conjugate Gradient (CG) update is as
shown below. The main building blocks that are con-
structed using the parallel FETI-DP procedure are high-
lighted in bold.

λ0 = 0; r0 = d− Fλ0

for k = 1, 2, . . .
zk−1 = M−1rk−1

ξk =
(
zT
k−1rk−1

)
/

(
zT
k−2rk−2

)
with ξ1 = 0

pk = zk−1 + ξkpk−1 with p1 = z0

γk =
(
zT
k−1rk−1

)
/

(
pT

k Fpk

)

λk = λk−1 + γkpk

rk = rk−1 − γkFpk

end

In addition to the communication requirements for
the FETI-DP, the CG update requires processor synchro-
nization points of its own. These are points beyond which
calculations cannot proceed unless all processors reach
that point. All vector inner products are synchroniza-
tion points. The two synchronization points are under-
lined above. An additional synchronization point is re-
quired to calculate the norm of the preconditioned resid-
ual ||zk−1||2, to determine the stopping criteria. In the
case of CG, the total number of points can be reduced to
one, using advanced norm estimation techniques [26, 27].
This refinement has not been included at present, but is
needed eventually when thousands of distributed mem-
ory nodes are used.

Parallel Implementation of GMRES

A standard Generalized Minimum Residual (GM-
RES) update requires an Arnoldi algorithm and a solu-
tion of a least-square problem. The Arnoldi algorithm
implemented in this study uses a Reorthogonalized Clas-
sical Gram-Schmidt procedure, based on Ref. [28]. This
procedure produces levels of orthogonalization that is
superior to Modified Gram-Schmidt [29], while prevent-
ing the unacceptable communication costs of the latter
(explained below). A Classical Gram-Schmidt (without
Reorthogonalization) is numerically unstable and is not
used in practice.

Recall, given an initial estimate x0 and residual
r0 = b − Ax0, every m-th GMRES update for the so-
lution of Ax = b is given by xm = x0 + K where K lies
in the Krylov subspace of dimension m associated with
A and r0, Km(A, r0) = span(r0, Ar0, . . . , A

m−1r0), and
minimizes the norm ||b−Ax||2.

The Arnoldi algorithm in dimension m constructs
an orthonormal basis Vm = [v1, v2, . . . , vm] of the Krylov
subspace Km(A, r0). The procedure also generates a ma-
trix H̄m of size (m+1)×m the top m×m block of which
is an upper Hessenberg matrix Hm. The m-th update is
computed as xm = x0 + Vmym where ym is calculated
such xm minimizes ||b − Axm||2. This amounts to cal-

13

culating a ym which minimizes ||βe1 − H̄mym||2 where
β = ||r0||2 and e1 is the first canonical vector of <m+1.
A QR factorization — employing Givens rotations — is
used here to solve this least squares problem.

The classical GMRES method expands the Krylov
subspace dimension to n and terminates in at most n
iterations, where n is the size of A. However, each itera-
tion requires every one of the previous basis vectors, and
hence the method is expensive in terms of memory. A
restarted version of GMRES restricts the expansion to,
say, m dimensions and restarts the Arnoldi algorithm us-
ing xm as it new initial guess. These restarts are called
the outer iterations. We use a restarted GMRES(m)
method. It is as follows.

λ0 = 0; r0 = d− Fλ0

z0 = M−1r0
β = ||z0||2
for k = 1, 2, . . . till convergence

v1 = zk−1/β
Arnoldi algorithm
Least-square solve of order m:

Calculate ym to minimize
min y∈<m ||βe1 − H̄my||2.
Use QR factorization of H̄m.

λk = λk−1 + Vmym

rk = d− Fλk

zk = M−1rk
β = ||zk||2

end

The Arnoldi algorithm consists of three steps. Given
A and an initial vector v1, the m orthonormal basis vec-
tors are constructed as follows.

for j = 1, 2, . . . , m
1. Basis expansion: wj+1 = Avj

2. Orthogonalization: orthogonalize wj+1

with respect to all previous Arnoldi
vectors (v1, v2, . . . , vj)

3. Normalization: hj+1,j = ||wj+1||2
and vj+1 = wj+1/hj+1,j .

The orthogonalization is the main step. Tradition-
ally, a Modified Gram-Schmidt procedure is preferred in
this step because of its numerical stability over Classical
Gram-Schmidt. It is as follows — with the synchroniza-
tion points underlined.

for j = 1, . . . , m
w = Fvj

t = M−1w
for i = 1, . . . , j

hi,j = vT
i t

t = t− hi,jvi

end
hj+1,j = ||t||2
vj+1 = t/hj+1,j

end

A complication is immediately apparent – the first
set of points, i.e. the vT

i t calculations, presents a high
communication requirement. Within each step j, the
vector t, once generated, is immediately projected to,
and subtracted from, each and every one of the previ-
ous Arnoldi vectors vi. Each projection, a vector inner
product, requires a global synchronization. In a Clas-
sical Gram-Schmidt, the projection and the subtraction
steps could be carried out separately, with a single syn-
chronization step in-between. However, because Classi-
cal Gram-Schmidt is unstable (though mathematically
equivalent to Modified Gram-Schmidt), a second orthog-
onalization step is needed. Thus, the final Reorthogonal-
ized Classical Gram-Schmidt algorithm is as follows.

for j = 1, . . . , m
w = Fvj

t = M−1w

for i = 1, . . . , j
hi,j = vT

i t
end
Global synchronization 1
for i = 1, . . . , j

t = t− hi,jvj

end

for i = 1, . . . , j
h′i,j = vT

i t
end
Global synchronization 2
for i = 1, . . . , j

t = t− h′i,jvj

end

h = h + h′

hj+1,j = ||t||2
vj+1 = t/hj+1,j

end

3-D FEM ROTOR ANALYSIS COMPONENTS

The main components of the 3-D rotor FEM anal-
ysis are described in this section. They are: geometry
and grids, partition and corner selection, steady hover
prototype, and the transient forward flight prototype.

These are mere prototypes because we do not use
real airloads, do not have a trim mechanism, and do not
have at present a true representation of a blade structure.
In addition, for research purposes, we will consider only
small size problems, with which a large number of cases
could be constructed using the 48 processors that were
at our disposal.

On the other hand, every fundamental aspect of the
physics of the structural dynamics of an isolated rotor
blade is incorporated. And, the parallel solution proce-
dure is generic, i.e. it is independent of the type of air-

14

0.1 R 0.1 R
0.05 R

R = 15 c

Figure 7: Planform of a hingeless rotor blade
showing two different span-wise grid resolu-
tions used in this study; c = 0.53 m

Figure 8: Cross-section of prototype rotor
blade; 4 × 4 bricks with internal nodes; 5%
t/c, exaggerated scale.

loads, control angle variation, grid, and material consti-
tution. The objective is to study the parallel scalability
of the Newton-Krylov solver.

Geometry and Grid

We consider a hingeless rotor blade, discretized as
shown in Figs. 7 and 8. The simple grid generator
for this study requires that the cross-sectional discretiza-
tion remains the same along span and that all sections
be solid. With these assumptions, it is straight forward
to accommodate an arbitrary variation of airfoil shape,
twist, planform, and advanced tips. A key limitation at
present is that only one continuous structure can be grid-
ded. Grid generation, however, is not the focus of this
work. It is assumed that a suitable grid will be available
to the solver from other sources.

The surface geometry, required for external forcing,
is defined by the sectional airfoil coordinates. We use a
generic, symmetric airfoil with 5% thickness (Fig. 8).

We consider a set of four finite element discretiza-

tions (Table 9). As before, n1×n2×n3 refers to numbers
of elements along span, chord, and thickness. Note that
each element contains 81 degrees of freedom and 64 in-
tegration points.

Grid n1 × n2 × n3 Total DOFs
1 48× 4× 2 12,960
2 48× 4× 4 25,920
3 96× 4× 2 25,920
4 96× 4× 4 46,656

Table 9: 3-D FEM rotor grids

Each finite element, naturally, can accommodate its
own constitutive material model and ply direction – we
use simple isotropic properties: E = 73 GPa; ν = 0.3;
and ρ = 2700 kg/m3 (corresponding to Aluminum).

Along with the dimension c = 0.53 m, these gen-
erate similar order of magnitude non-dimensional values
of stiffness and inertia as soft in-plane hingeless rotors.
No attempt is made to place the sectional offsets with
respect to quarter-chord. Thus, the blade may not be
dynamically stable. However, the values will generate
typical deflections with typical airloads. The airloads are
an uniform 4000 N/m2 baseline (around 375 lb/ft along
span), and two and four times that magnitude, to gener-
ate moderately large deformations. These are referred to
as airloads 1, 2, and 3. The pressure airloads act only on
the top surface and have the non-linear characteristics of
a follower force – i.e., they act normal to the deformed
surface which is not know a priori. The rotational speed
is Ω = 27 rad/s (steady).

Grid Partitioning and Corner Selection

The partitioning requirements are unique. The gen-
eration of subdomain grids from a global grid via a re-
calculation of the finite element connectivity is straight-
forward. Partitioners are widely available in public do-
main, that carry out this task ensuring an optimal bal-
ancing of processor loads. However, for structures, this
is not the most important requirement. The most im-
portant requirement is that the the coarse problem be
picked to ensure a null kernel in every substructure, i.e.
Ks

RR be invertible.
The partitioner we develop as part of this research is

simple – in that it handles only the brick elements we de-
veloped, and it makes the same assumptions on grid type
as our simple grid generator. Namely, the cross-sectional
grids must remain the same throughout the span, regard-
less of variations in geometry.

Figure 9(a) shows a generic 2-D partition that is
used in the present study. The blade can be divided
into any number of substructures in the span-wise and
chord-wise directions. Figure 9(b) shows an alternative
1-D partition. It will be shown that the 1-D partition,
though naturally load balanced, is a poor partition and
should not be used.

The partitioner performs the following tasks:

15

(a) 2-D partitioned blade grid (b) 1-D partitioned blade grid

Figure 9: 2-D and 1-D partitioning of blade grid into substructures. Each substructure is solved in a
separate processor.

1. Designates the corner nodes.

2. Re-orders the subdomain nodes into interior, face,
edge, vertex, and boundary nodes. Re-calculates the
subdomain finite element connectivity.

3. Sets up domain connectivity maps for substructure
to substructure communication.

The first and second are the key tasks. The third is
merely a matter of book-keeping.

Corner Selection

Consider the 2-D partition of Fig. 9(a). The nodes
on the subdomain edges — that are common to more
than two subdomains — are immediately designated as
corner nodes. It is clear, however, that this definition
makes the two substructures at the tip end (or extrem-
ities of the tip end in case of more than two chord-wise
strips) indefinite. Each substructure then carries a ro-
tational rigid body mode making Ks

RR non-invertible.
Thus, the definition of corner nodes must include, in ad-
dition those edge nodes, which may be common only to
two subdomains, but which occur at the boundaries of
the structure. With this definition, the corner nodes of
a typical substructure are now as shown in Fig. 10. This
definition also enables the selection of corner nodes for a

typical substructure of the 1-D partition (Fig. 11), oth-
erwise, there would be no corner nodes. For a large scale
3-D problem, a large number of corner nodes is generated
by this procedure. A superior choice is simply the sub-
domain vertices, and like before, additionally those that
occur at the boundaries (Fig. 12). There is then always
a maximum of only 8 corner nodes per subdomain – re-
gardless of the grid. In this paper, this selection is not
implemented. We use the previous selection as shown in
Fig. 10.

Node Reorder

The re-ordering brings the interior nodes first, fol-
lowed by interface nodes, then corner nodes, and lastly
the boundary nodes. The procedure depends on the grid,
partition (1-D or 2-D), and the selection of corner nodes.
The N elemental nodes in each brick is associated with
a natural order within each substructure. The natural
order is then associated with a reordered order, and a
reverse association back to natural. In addition, the nat-
ural order is associated with the global order because
the geometry and material constitution is defined in the
latter.

16

Boundary nodes

Interface nodes
(faces)

Corner nodes
(vertices and

edges)

Figure 10: Node designation for a typical sub-
domain from a 2-D partition. Corner nodes
are edge nodes connecting more than two sub-
structures and those occurring at the bound-
aries.

Boundary nodes

Corner nodes
(edges)

Interface nodes
(faces)

Figure 11: Node designation for a typical sub-
domain from a 1-D partition.

Domain Connectivity

For a Lagrangian formulation, the connectivity re-
mains static, and needs to be calculated only once for
a grid. The non-floating and non-overlapping nature of
the partitions, and the conforming nature of the finite
elements lead to no search, interpolation, or projection
requirements. Consequently, there are no errors intro-
duced during substructure to substructure communica-
tion. Each substructure carries a destination map and a
reception map. The destination map contains the sub-
structures to which quantities are to be dispatched, and
the node numbers to which they correspond. The recep-
tion maps contains the substructures from which quan-
tities are to be received, and the internal node numbers
to which they will correspond.

Boundary nodes

Interface nodes
(faces and edges)

Corner nodes
(vertices only)

Figure 12: Optimal Node designation for a typ-
ical subdomain from a 2-D partition. Corner
nodes are vertex nodes only including those
occurring at the boundaries.

Steady Hover Prototype

The steady hover prototype simply solves for blade
response using a prescribed pressure airload at a constant
collective pitch angle. The non-linear solution procedure
uses Newton-Raphson outer iterations. The FETI-DP
inner solver uses CG update in hover. This is adequate
as the stiffness matrix is symmetric.

Several initial updates of the stiffness matrix are
necessary to include the non-linear structural stiffness –
which provides the key extension-bending non-linearity
associated with rotation. Figure 13 shows the conver-
gence of this non-linearity in the left hand side of the
figure. Around 8 to 10 iterations are required. Subse-
quently, the stiffness matrices can be updated only at
certain intervals if desired, while using modified New-
ton iterations in between. Once the structural non-
linearities are converged, the pressure airloads are im-
posed on the blade. The direction of the pressure airloads
is deformation-dependent and unknown a priori. Thus,
equilibrium iterations are required. The convergence of
the airload iterations are shown in the same plot on the
right hand side (corresponding to airloads 1, 2, and 3).
The two parts are shown separately only because the lat-
ter are equilibrium iterations where the geometric stiff-
ness need not be updated. The results shown, however,
are with fully updated stiffness in every iteration.

In each iteration, the virtual work is calculated based
on the previous iteration deformation state. An alter-
native and more rigorous approach is to linearized the
forcing using incremental displacements. This leads to
a non-symmetric stiffness contribution, which is however
easily handled by replacing the geometric stiffness K with
1/2(K+KT), since the role of the stiffness is only to con-
verge the Newton iterations. However, iterations are still
necessary and therefore we believe the previous configu-
ration approach is more efficient. The relatively large de-

17

0 10 20 30 40
10

−15

10
−10

10
−5

10
0

10
5

Newton−Raphson iterations

R
el

at
iv

e
re

si
du

al
, |

|∆
 q

|| 2 /
||q

|| 2

Airloads 1

Airloads 2

Airloads 3

Non−linearity from
forcing (surface pressure)Rotational

non−linearity

Figure 13: Convergence of Newton-Raphson
outer iterations for rotational and forcing
non-linearities in hover

0

2

4

6

8−0.4 0 0.4

0

0.5

11
span, m

chord, m

de
fle

ct
io

n,
 m

Root

Tip

Figure 14: Blade steady deflection in hover us-
ing prescribed pressure airloads 3 (only grid
outlines are shown)

0 20 40 60 80 100 120
10

−15

10
−10

10
−5

10
0

10
5

10
10

Matrix−Vector multiplies, no. of CG iterations

R
es

id
ua

l

4 proc

6 proc

8 proc

16 proc

24 proc

32 proc

48 proc

Figure 15: Convergence pattern of FETI-DP
(CG) updates in steady hover calculations on
4 to 48 processors.

0 20 40 60 80
10

−15

10
−10

10
−5

10
0

10
5

10
10

Matrix−vector multiplies

R
es

id
ua

l

m=40

m=30

m=20

m=10

m=5

Figure 16: Convergence of FETI-DP (GMRES)
updates for various restart parameters in for-
ward flight; all calculations are with 32 pro-
cessors.

18

formation corresponding to airloads 3 is shown in Fig. 14.
The convergence criteria of the inner Krylov solver

is set tightly to 10−12 for all cases in this study. Fig. 15
shows the convergence of the solver when run on 4 to 48
processors. The convergence corresponding to the first
Newton iteration is shown, as it begins with zero guess
and takes the most number of iterations. The parallel
scalability of these calculations are examined in more de-
tail in the next section. Here, we note that the iteration
count shows an initial increase with processors. This is
contrary to Table 7 but is recognized for 3-D brick prob-
lems in Ref. [16]. The remedy is an edge-based augmen-
tation procedure that is not incorporated in this work.

Transient Forward Flight Prototype

The transient forward flight prototype solves for
blade response using the same set of prescribed pressure
airloads as in hover, but now the stiffness and forcing val-
ues are those that arise out of a single time step of a time-
marching procedure. We consider a Newmark scheme
with a 5◦ azimuth step. The control angle variation is
taken as θ(ψ) = 20◦ + 5◦ cosψ − 5◦ sin ψ. The dynamic
stiffness now contains the complete non-symmetric in-
ertial terms. Therefore, the FETI-DP inner solver now
uses a GMRES update.

The matrix structure will be identical in every time
step, therefore, for purposes of scalability it is enough to
study only one time step. Unlike CG where each update
requires only two previous solutions, in GMRES, each up-
date requires all of the previous updates. The restarted
version, as explained earlier, uses at the most m updates
at a time, starting afresh with a superior initial guess
each time.

Figure 16 shows, that for the small grid size used
here (i.e. a small bandwidth), the convergence pattern
remains similar over a wide range of restart parameters
– even m = 5 is adequate. For purposes of a realistic
scalability study, however, we will consider m = 30, 40,
and 50. These are deemed more suitable for large scale
problem sizes.

SCALABILITY OF 3-D ROTOR ANALYSIS

The parallel scalability of the 3-D FEM solver is doc-
umented here in detail. The first section deals with the
steady hover prototype. The Krylov solver uses a CG
update here. The idea of substructure optimality and
the definition of scalability are introduced. The second
section deals with the transient forward flight prototype.
The Krylov solver is equipped with a GMRES update
here.

Steady Hover

Consider the grid of size 96× 4× 2. It is partitioned
into 6 to 48 substructures using a 2-D partitioning, i.e.,
having an arrangement as Fig. 9(a) with 3× 2 to 24× 2
subdomains.

ns FE Subdomain Coarse FETI-DP Solver
LU problem CG total

6 201 757 130 775 1668
8 200 463 91 622 1180
12 199 246 63 458 770
16 194 165 52 361 580
24 191 96 51 267 416
32 190 66 71 213 350
48 190 39 168 187 395

Table 10: Solver time (secs) vs. number of sub-
structures ns on a single processor

np FE Subdomain Coarse FETI-DP Solver
LU problem CG total

6 32.6 121.80 21.56 94.07 237.87
8 24.2 57.44 12.33 57.23 127.28
12 16.2 20.95 5.80 26.85 53.73
16 12.6 10.54 3.64 14.93 29.19
24 8.18 4.16 2.71 7.96 14.89
32 6.01 2.20 2.92 5.70 10.85
48 4.24 0.88 5.62 5.15 11.70

Table 11: Solver time (secs) vs. number of proces-
sors np; each processor contains one substructure

The dramatic reduction in solution time is clear from
Tables 10 and 11. The details are described later. Here,
we note that a direct solution of this problem takes more
than 50, 000s. The iterative substructuring method, with
32 substructures, but still on a single processor, brings it
down to only 350s (Table 10). In addition, the method is
now fully parallel. Therefore, a scalable implementation,
on 32 processors, finally brings it down drastically to
10.85s (Table 11).

Consider the solver times for this problem on a single
processor (Fig. 17). The importance of substructuring is
immediately apparent. There is a steep drop in solu-
tion time with increasing number of substructures. For
a problem of fixed size, a condition of diminishing return
must eventually be reached, with an optimal number of
substructures producing the minimum solution time. We
shall call this the substructure optimality number. For
this problem it is 32. Note, however, that the rise in so-
lution time beyond the optimality point is not nearly as
steep as its decline prior to it, and there is a large region
over which it remains flat. For this problem, this region
is roughly from 16 to 48 substructures. This flat region
is a gift of iterative substructuring. It is shown later that
this region is sensitive to the partitioning and corner se-
lection scheme. A good partitioner and corner selector
will keep this region flat, a poor one will produce a steep
rise.

The parallel implementation solves each substruc-
ture on a separate processor. To calculate parallel speed-
up, it is important to use the single processor time with
the same number of substructures as the baseline. That
is, the solver time with, say 32 processors, must be com-

19

0 8 16 24 32 40 48 56
200

400

600

800

1000

1200

1400

1600

1800

No. of substructures

T
im

e
(s

)

Figure 17: Solver time vs. number of substruc-
tures for calculations on a single processor.

0 8 16 24 32 40 48 56
0

8

16

24

32

40

48

56

No. of processors

P
ar

al
le

l s
pe

ed
−

up

Linear speed−up line

Figure 18: Parallel speed-up for calculations on
multiple processors; each substructure solved
in a separate processor.

0 8 16 24 32 40 48 56
0

500

1,000

1,500

2,000

No. of substructures

T
im

e(
s)

2−D partition
1−D partition

Figure 19: Effect of grid partitioning and cor-
ner selection on solver time as a function of
number of substructures; calculations on a
single processor.

0 10 20 30 40 50
0

10

20

30

40

50

No. of processors

P
ar

al
le

l s
pe

ed
−

up

2−D partition
1−D partition

Linear speed−up line

Figure 20: Effect of grid partitioning and cor-
ner selection on parallel speed-up for calcula-
tions on multiple processors.

20

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

No. of substructures

T
im

e(
s)

Grid size (96,4,2)

Grid size (96,4,4)

Figure 21: Two different problem sizes
with the same substructure optimality;
solver time vs. number of substructures
on a single processor.

pared with the corresponding solver time on a single pro-
cessor that uses 32 substructures. This is to ensure that
computations of the same complexity are compared, oth-
erwise, the speed-up is contaminated with the benefits of
substructuring and a super-linear number is always ob-
tained. This is because using 32 substructures on a sin-
gle processor by itself reduces the solver time by more
than 32 – a fact that has nothing to do with paralleliza-
tion but substructuring itself. The parallel speed-up is
shown in Fig. 18. Even for this fixed problem size, it
has a perfectly linear trend up to the point of substruc-
ture optimality. Note that the point corresponding to 32
processors has nothing to do with the point correspond-
ing to 16 processors. Indeed, the 32 processor run takes
only 10.9s whereas the 16 processor run takes 29.2s, i.e.
less than half the time, due to the dramatic reduction in
subdomain LU time (see Table 10). What the speed-up
plot shows is that 32 processors run the problem exactly
32 times faster compared to a single processor using 32
substructures.

The drop off in scalability beyond 32 processors is
studied using the detailed timings for the different parts
of the computation. The timings for the single proces-
sor and parallel calculations are given in Tables 10 and
11. In the tables, ‘FE’ refers to the time taken to con-
struct the structural matrices. ‘Solver total’ refers to
the total solver time. The two together constitute the
total simulation time. ‘Solver total’ consists of three
parts: (1) ‘Subdomain LU’ time, which refers to the sub-
domain factorization, (2) ‘Coarse problem’ time, which
refers to the coarse problem factorization and communi-
cation, and (3) the ‘FETI-DP’ time, refers to the Krylov
solver time. Note that the later includes the computation
and communication costs of the residual, preconditioner,
and matrix-vector multiplies, and the additional commu-
nications required for the updates. The communications

0 8 16 24 32 40 48 56
0

8

16

24

32

40

48

56

No. of processors

P
ar

al
le

l s
pe

ed
−

up

Grid size (96,4,2)

Grid size (96,4,4)

Linear speed−up line

Figure 22: Parallel speed-up for problem
sizes with the same substructure opti-
mality; solver time vs. number of pro-
cessors.

costs are, of course, incurred only during the parallel cal-
culations.

From Table 10, which shows the single processor
timings, the reason behind the flat region in Fig. 17 is
clear. The growth in the coarse problem is offset by the
reduction in the Krylov solver time. This is expected
– as the purpose of the coarse problem is precisely that
– but the key point is that the coarse solver should be
just enough to serve this purpose and no larger, so that
the substructure optimality is pushed to as high a pro-
cessor number as possible. Beyond the optimality point,
any growth in the coarse problem is an indicator of in-
creased communication cost for the parallel implemen-
tation. Note that the coarse problem is solved in every
processor and as such, requires a global communication.
The drop off in Fig. 18 is a direct consequence of this
communication cost. To summarize, a key objective of
the coarse problem selection should be to suppress the
growth beyond substructure optimality to as gradual as
possible. This has little bearing upon scalability with
problem size, but serves to extend linear speed-up for
a fixed problem size, to as high a processor number as
possible.

We illustrate the importance of the coarse problem
with a worse partitioning. The same problem, when
treated with a 1-D partitioning as illustrated earlier in
Figs. 9(b) and 11, generates a timing and scalability plot
as shown in Figs. 19 and 20. The 2-D partitioning results
are also plotted for comparison. Clearly, from Fig. 19,
the same problem now has a substructure optimality of
16, as opposed to 32. A good parallel implementation
should guarantee a linear speed-up to at least 16 proces-
sors. Scalability beyond this number is expected to be
affected adversely by communication costs of the coarse
problem. This is exactly what is observed in Fig. 20.

Thus, the linear speed-up range is not a function

21

0 10 20 30 40 50
0

500

1000

1500

2000

2500

No. of substructures

T
im

e(
s)

Grid size (48,4,2)

Grid size (48,4,4)

Figure 23: Two different problem sizes
with the same substructure optimality;
solver time vs. number of substructures
on a single processor.

0 8 16 24 32 40 48 56
0

8

16

24

32

40

48

56

No. of processors

P
ar

al
le

l s
pe

ed
−

up

Grid size (48,4,2)

Grid size (48,4,4)

Linear speed−up line

Figure 24: Parallel speed-up for problem
sizes of same substructure optimality.

of problem size alone but also of substructure optimal-
ity. For example, Figs. 21 and 22 compare the single
processor solution time and parallel speed-up of a bigger
problem of size 96 × 4 × 4. From the single processor
solution time, it is clear that the substructure optimality
is still 32. As a result, the linear speed-up range still ex-
tends only up to 32. The same conclusions hold for very
small problem sizes, as shown in Figs. 23 and 24. The
smallest grid of 48× 4× 2 shows a linear speed-up up to
24 processors – it’s substructure optimality – in exactly
the same manner as a grid of 48× 4× 4 twice its size.

In summary, given a problem size, the solver shows
a linear speed-up – for at least as many processors as its
substructure optimality. To extend this linear speed-up
range, a smaller coarse problem is required. An example
of such a selection was shown earlier in Fig. 12.

The scalability with increasing problem size is il-

0 10 20 30 40 50
200

400

600

800

1000

1200

1400

No. of substructures

T
im

e
(s

)

GMRES(30)
GMRES(40)
GMRES(50)

Figure 25: Solver time vs. number of sub-
structures on a single processor; FETI-
DP (GMRES).

np Problem 1 Problem 2 Problem 3
48× 4× 2 96× 4× 2 48× 4× 4

6 51.52 237.87 232.00
8 28.39 127.28 126.70
12 13.07 53.73 55.43
16 8.22 29.19 32.72
24 5.73 14.89 21.69
32 5.70 10.85 22.28
48 9.62 11.70 38.89

Table 12: Parallel solver times (secs) showing scal-
ability with respect to problem size up to limits
of substructure optimality.

lustrated in Table 12. Problem 2 has twice the size of
Problem 1 (from Table 9). Problem 3 has the same size
as Problem 2, only different grid characteristics. Prob-
lem 2 and 3, therefore, have similar solver times, up to
substructure optimality which sets in at 24 processors
for Problem 3. The timings of Problem 1 and Problem 2
provide a simple illustration of scalability with increasing
size. Because Problem 2 is twice the size, twice the num-
ber of processors provide approximately the same solve
time. For example, Problem 2 on 12 processors take sim-
ilar time as Problem 1 on 6. Problem 2 on 16 take similar
time as Problem 1 on 8.

Transient Forward Flight

The conclusions drawn on effective partitioning and
substructure optimality in the previous section are car-
ried over to this section. These results, which are similar
to those shown in hover, are not repeated here. The
scalability results for a single grid size 96 × 4 × 2 (with
substructure optimality of 32) is presented. The results
for the other grids compare similarly to hover.

The scalability of the parallel FETI-DP (GMRES)
solver involving the non-symmetric matrices in forward

22

0 10 20 30 40 50
0

10

20

30

40

50

No. of processors

P
ar

al
le

l s
pe

ed
−

U
p

GMRES(30)
GMRES(40)
GMRES(50)

Linear speed−up line

Figure 26: Parallel speed-up of FETI-DP
(GMRES) solver using Classical Gram-
Schmidt with Reorthogonalization based
Arnoldi procedure.

np Modified GS Classical GS
with Reorth.

6 194.08 190.17
8 109.47 100.47
12 41.69 41.43
16 23.92 24.24
24 12.33 11.77
32 8.88 8.61
48 10.67 10.04

Table 13: Parallel FETI-DP (GMRES) solver
times (secs) with Modified Gram-Schmidt and
Classical Gram-Schmidt with Reorthogonaliza-
tion based Arnoldi procedures.

flight shows a similar linear trend as those of the FETI-
DP (CG) solver in hover. The single processor timings
are shown in Fig. 25. All calculations use the Reorthogo-
nalized Classical Gram-Schmidt Arnoldi procedure. The
increasing restart parameters all show the same timings
on a single processor – as expected, because their affect
is only on memory – but incur increasing communication
costs for a parallel calculation. However, for the small
sized problems considered here, there are no discernible
differences between the three versions even in parallel. As
a result, the scalability plot shown in Fig. 26 is identical
for all three cases. Indeed, even the Modified Gram-
Schmidt procedure show the same scalability behavior
(Fig. 27). The latter is expected to be drastically inferior
for large subdomain problems. Note however, regardless
of scalability, the actual solution times for Reorthogo-
nalized Classical Gram-Schmidt are by themselves lower
compared to the Modified Gram-Schmidt. This differ-
ence is expected to be drastic for large scale problems.
This trend is clear in Table 13.

0 10 20 30 40 50
0

10

20

30

40

50

No. of processors

P
ar

al
le

l s
pe

ed
−

U
p

GMRES(30)
GMRES(40)
GMRES(50)

Linear speed−up line

Figure 27: Parallel speed-up of FETI-DP
(GMRES) solver using Modified Gram-
Schmidt based Arnoldi procedure.

CONCLUDING OBSERVATIONS

The main objective of this paper was to demon-
strate a parallel and scalable solution procedure for a 3-D
FEM based dynamic analysis of helicopter rotor blades.
The 3-D FEM analysis was formulated with an empha-
sis on the non-linear structural, and inertial terms that
are unique to rotorcraft. Second order, isoparametric,
hexahedral brick elements, that are well suited to dis-
cretize a rotor blade structure, were developed to carry
out this study. A dual-primal iterative substructuring
based Krylov solver was developed for a fully parallel so-
lution procedure. The iterative substructuring method
was built upon the FETI-DP domain decomposition al-
gorithm. The Krylov solver was equipped with GMRES
updates, in addition to its traditional CG update, due to
the the non-symmetric nature of the inertial terms. A
detailed study was carried out on the scalability of the
solution procedure for both hover and transient forward
flight conditions. Based on this study, the following key
conclusions are drawn.

Key conclusions

1. A 3-D FEM based rotor dynamic analysis can be
carried out using a fully parallel and scalable solu-
tion procedure.

2. Given a fixed problem size, there is always an op-
timal number of substructures into which it can be
decomposed – termed substructure optimality – so
as to require the minimum solution time.

3. The 3-D FEM analysis presented in this paper is
scalable, i.e. shows a linear speed-up up to the point
of substructure optimality. A p-processor calcula-
tion with a separate substructure in each processor
takes 1/p the time compared to a single processor
with p substructures. It also scales with problem

23

size. That is, a n-times larger problem takes similar
time with n× p processors.

4. For a fixed problem size, a drop off in scalability
eventually occurs – but not before the subdomain
optimality number is reached. At that point, there
is no reason to use any more processors – unless a
larger problem is attacked – in which case, linear
speed-up is restored again up to the new optimal.
However, even if more processors than optimal is
used, the scalability only reaches a plateau, and does
not show a dramatic fall. The plateau stems from
iterative substructuring and is due to the flat region
at the bottom of the time vs. substructure curve.

5. The drop in scalability beyond substructure optimal-
ity is traced to two factors: the increasing substruc-
ture to substructure communication cost, and, the
global coarse problem communication cost. The first
penalty is relatively minor, and can be minimized
with a minimum number of synchronization points
during the Krylov update. This is more relevant to
the GMRES. The second penalty, which stems from
the coarse problem, is an important factor.

6. The size of the coarse problem is the key driver for
both parallel scalability as well as solution time. The
global communication required by the coarse prob-
lem drives scalability. The size of the coarse problem
drives solution time. In order to ensure scalabil-
ity while decreasing solution time, a minimal coarse
problem should be selected.

7. The coarse problem is selected by the domain parti-
tioning algorithm. Partitioning has special require-
ments in structures – not just any will do. The key
idea is that the coarse problem must ensure null ker-
nels in each substructure while satisfying the criteria
of minimal selection (conclusion 6).

In summary, the parallel solver developed in this
study can solve both hover and transient forward flight
response in a scalable manner. For example, each New-
ton iteration of a 25, 920 DOFs problem, could be solved
in approximately 8 − 10 seconds on 32 processors with
a residual reduction level of 10−12. A direct solve on a
single processor, in comparison, is not feasible – requir-
ing more than 50, 000s. Real blade structures will contain
millions of DOFs. The scalability of the solver must then
be tested on 100s and 1000s of processors. Actual solver
timings would be as important as scalability.

The next fundamental challenge towards the appli-
cation of this solver is the problem of periodic response.
Transient response is of little use in rotary wing dynamics
due to the requirement of obtaining periodic solutions in
presence of undamped modes. The requirement for a fi-
nite element in time or non-linear harmonic balance type
method will be realized more acutely during high fidelity
analysis. A time based domain decomposition mecha-
nism must be innovated. This, and other key challenges
are summarized below in way of conclusion.

Future Research Areas

A suggested list for future directions of this research
is given below subdivided into three categories.

Fundamental Research

1. Periodic dynamics – scalable domain decomposition
in time for temporal boundary value problems.

2. 3-D FEM and multibody dynamics coupling.

Applied Research

1. Nodeless elements for multibody dynamics coupling.
Efficient, locking-free, hierarchical elements.

2. 3-D fluid-structure interfaces. Innovative delta cou-
pling for trim solution in level and turning flight.

Application Development

1. Interfacing with 3-D solid geometry and grid tools.

2. Smart substructuring – corner node selection, inter-
face localization, and nodal reordering.

ACKNOWLEDGMENTS

We acknowledge Dr. Roger Strawn’s support for this
research at the U. S. Army AFDD as part of the HPC In-
stitute of Advanced Rotorcraft Modeling and Simulation
(HI-ARMS) program supported by the U. S. DoD HPC
Modernization Program Office. We thank Prof. Char-
bel Farhat, Stanford University, for his kind advice and
insights. We also thank Dr. Guru Guruswamy, NASA
Ames Research Center, for his useful comments and sug-
gestions.

REFERENCES

[1] Przemieniecki, J. S., “Matrix Structural Analysis
of Substructures,” AIAA Journal, Vol. 1, (1), Jan-
uary 1963, pp. 138–147.

[2] Przemieniecki, J. S. and Denke, P. H., “Joining
of Complex Substructures by the Matrix Force
Method,” Journal of Aircraft, Vol. 3, (3), May–
June 1966, pp. 236–243.

[3] Denke, P. H., “A General Digital Computer Analy-
sis of Statically Indeterminate Structures,” NASA
TN D-1666, December, 1962.

[4] Argyris, J. H. and Kelsey, S., Modern Fuselage
Analysis and the Elastic Aircraft, Butterworth’s
Scientific Publications Ltd., London, 1963.

[5] Turner, M. J., Martin, H. C., and Weikel, R.
C., “Further Development and Applications of the
Stiffness Method,” Matrix Methods of Structural
Analysis, AGARDograph 72, Pergamon Press,
New York, 1964, pp. 203–266.

24

[6] Smith, B., Bjørstad, P., and Gropp, W., Domain
Decomposition – Parallel Multilevel Methods for
Elliptic Partial Differential Equations, Cambridge
University Press, UK, 1996.

[7] Agoshkov, V. I. and Lebedev, V. I., “Poincaré–
Steklov Operators and the Methods of Partition
of the Domain in Variational Problems,” Computa-
tional Processes and Systems, Vol. 2, ed., Marchuk,
G. I., Nauka, Moscow, pp. 173–227. In Russian.

[8] Agoshkov, V. I., “Poincaré–Steklov Operators and
Domain Decomposition Methods in Finite Dimen-
sional Spaces,” First International Symposium on
Domain Decomposition Methods for Partial Dif-
ferential Equations, eds., Glowinski et al., SIAM,
Philadelphia, pp. 73–112.

[9] Bramble, J. H., Pasciak, J. E., and Schatz, A. H.,
“The Construction of Preconditioners for Elliptic
Problems by Substructuring,” I, II, III, and IV,
Mathematics of Computation, Vol. 47, (175), 1986,
pp. 103–134, Vol. 49, (179), pp. 1–16, 1987, Vol.
51, (184), pp. 415–430, 1988, and Vol. 53, (187),
pp. 1–24, 1989.

[10] Quarteroni, A. and Valli, A., Domain Decompo-
sition Methods for Partial Differential Equations,
Oxford University Press, Oxford, UK, 1999.

[11] Toselli, A. and Widlund, O., Domain Decomposi-
tion Methods – Algorithms and Theory, Springer
Series in Computational Mathematics, Springer-
Verlag Berlin Heidelberg, 2005.

[12] Computers and Structures, Vol. 85, (9), special is-
sue on “High Performance Computing for Compu-
tational Mechanics,” eds., Magouls, F. and Top-
ping, B. H. V., May 2007, pp.487-562.

[13] Computer Methods in Applied Mechanics and En-
gineering, Vol. 196, (8), special issue on “Domain-
Decomposition Methods: Recent Advances and
New Challenges in Engineering,” eds., Magouls, F.
and Rixen, D., January 2007, pp. 1345-1622.

[14] Mandel, J., and Dohrmann, C. R., “Convergence of
a Balancing Domain Decomposition by Constraints
and Energy Minimization,” Numerical Linear Al-
gebra with Applications, Vol. 10, (7), 2003, pp. 639–
659.

[15] Farhat, C., Lesoinne, M., and Pierson, K.,
“A Scalable Dual-Primal Domain Decomposition
Method,” Numerical Linear Algebra with Applica-
tions, Vol. 7, (7–8), 2000, pp. 687–714.

[16] Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K.,
and Rixen, D., “FETI-DP: A Dual-Primal Unified
FETI Method - Part I: A Faster Alternative to
the Two-level FETI Method,” International Jour-
nal of Numerical Methods in Engineering, Vol. 50,
pp. 1523–1544, 2001.

[17] Mandel, J., Dohrmann, C. R., and Radek, T. “An
Algebraic Theory for Primal and Dual Substructur-
ing Methods by Constraints,” Applied Numerical
Mathematics, Vol. 54, (2), July 2005, pp. 167–193.

[18] Berdichevsky, V. L., “Variational-Asymptotic
Method of Constructing a Theory of Shells,” Jour-
nal of Applied Mathematics and Mechanics, trans-
lated from Prikladnaya Matematika i Mekhanika,
Vol. 43, (4), 1979, pp. 664–687.

[19] Hodges, D. H., Nonlinear Composite Beam Theory,
AIAA, Reston, VA, 2006.

[20] Volovoi, V. V., and Hodges, D. H., “Theory of
Anisotropic Thin-Walled Beams,” Journal of Ap-
plied Mechanics, Vol. 67, (3), September 2000, pp.
453–459.

[21] Yu, W., Hodges, D. H., Volovoi, V. V., and Ces-
nik, C. E. S., “On Timoshenko-Like Modeling of
Initially Curved and Twisted Composite Beams,”
International Journal of Solids and Structures, Vol.
39, (19), September 2002, pp. 5101-5121.

[22] Bathe, K., Finite Element Procedures in Engineer-
ing Analysis, Prentice-Hall, Inc., NJ, 1982.

[23] Zienkiewicz, O. C., and Taylor, R. L., The Finite
Element Method for Solid and Structural Mechan-
ics, Elsevier Butterworth-Heinemann, Oxford, UK,
Sixth edition, 2006.

[24] Zienkiewicz, O. C., The Finite Element Method
in Structural and Continuum Mechanics, McGraw-
Hill, London, U.K., 1967.

[25] Le Tallec, P., “Domain Decomposition Methods
in Computational Mechanics,” Computational Me-
chanics Advances, Vol. 1, (2), 1994, pp. 121–220.

[26] Meurant, G., “Multitasking the Conjugate Gra-
dient method on the CRAY X-MP/48”, Parallel
Computing, Vol. 5, (3), July 1987, pp. 267–280.

[27] Saad, Y., “Krylov Subspace Methods on Super-
computers,” SIAM Journal on Scientific and Sta-
tistical Computing, Vol. 10, (6), November 1989,
pp. 1200–1232.

[28] Daniel, J. W, Gragg, W. B., Kaufman, L. and
Stewart, G. W., “Reorthogonalization and Stable
Algorithms for Updating the Gram-Schmidt QR
Factorization,” Mathematics of Computation, Vol.
30, (136), October 1976, pp. 772-795.

[29] Giraud, L., Langou, J. and Rozioznik, M., “The
Loss of Orthogonality in the Gram-Schmidt Or-
thogonalization Process,” Computers and Math-
ematics with Applications, Vol. 50, (7), October
2005, pp. 1069–1075.

25

